Kalkulus (Bahasa Latin: calculus, artinya "batu kecil", untuk menghitung) adalah cabang ilmu matematika yang mencakup limit, turunan, integral, dan deret takterhingga. Kalkulus adalah ilmu mengenai perubahan, sebagaimana geometri adalah ilmu mengenai bentuk dan aljabar adalah ilmu mengenai pengerjaan untuk memecahkan persamaan serta aplikasinya. Kalkulus memiliki aplikasi yang luas dalam bidang-bidang sains, ekonomi, dan teknik; serta dapat memecahkan berbagai masalah yang tidak dapat dipecahkan dengan aljabar elementer.
Kalkulus memiliki dua cabang utama, kalkulus diferensial dan kalkulus integral yang saling berhubungan melalui teorema dasar kalkulus. Pelajaran kalkulus adalah pintu gerbang menuju pelajaran matematika lainnya yang lebih tinggi, yang khusus mempelajari fungsi dan limit, yang secara umum dinamakan analisis matematika.
Kalkulus memiliki dua cabang utama, kalkulus diferensial dan kalkulus integral yang saling berhubungan melalui teorema dasar kalkulus. Pelajaran kalkulus adalah pintu gerbang menuju pelajaran matematika lainnya yang lebih tinggi, yang khusus mempelajari fungsi dan limit, yang secara umum dinamakan analisis matematika.
Kalkulus merupakan matakuliah wajib tingkat pertama bagi hampir semua departemen/ jurusan di Institut Teknologi Bandung (kecuali Departemen Desain dan Seni Murni), dan juga merupakan mata kuliah wajib tingkat pertama untuk jurusan Informatika disemua Fakultas.
Teorema dasar kalkulus menjelaskan relasi antara dua operasi pusat kalkulus, yaitu pendiferensialan (differentiation) dan pengintegralan (integration).
Bagian pertama dari teorema ini, kadang-kadang disebut sebagai teorema dasar kalkulus pertama, menunjukkan bahwa sebuah integral taktentu[1] dapat dibalikkan menggunakan pendiferensialan.
Bagian kedua, kadang-kadang disebut sebagai teorema dasar kalkulus kedua, mengijinkan seseorang menghitung integral tertentu sebuah fungsi menggunakan salah satu dari banyak antiturunan. Bagian teorema ini memiliki aplikasi yang sangat penting, karena ia dengan signifikan mempermudah perhitungan integral tertentu.
Penyataan yang pertama kali dipublikasikan dan bukti matematika dari versi terbatas teorema dasar ini diberikan oleh James Gregory (1638-1675)[2]. Isaac Barrow membuktikan versi umum bagian pertama teorema ini, sedangkan anak didik Barrow, Isaac Newton (1643-1727) menyelesaikan perkembangan dari teori matematika di sekitarnya. Gottfried Leibniz (1646–1716) mensistematisasi ilmu ini menjadi kalkulus untuk kuantitas infinitesimal.
Teorema dasar kalkulus kadang-kadang juga disebut sebagai Teorema dasar kalkulus Leibniz atau Teorema dasar kalkulus Torricelli-Barrow.
Bagian pertama dari teorema ini, kadang-kadang disebut sebagai teorema dasar kalkulus pertama, menunjukkan bahwa sebuah integral taktentu[1] dapat dibalikkan menggunakan pendiferensialan.
Bagian kedua, kadang-kadang disebut sebagai teorema dasar kalkulus kedua, mengijinkan seseorang menghitung integral tertentu sebuah fungsi menggunakan salah satu dari banyak antiturunan. Bagian teorema ini memiliki aplikasi yang sangat penting, karena ia dengan signifikan mempermudah perhitungan integral tertentu.
Penyataan yang pertama kali dipublikasikan dan bukti matematika dari versi terbatas teorema dasar ini diberikan oleh James Gregory (1638-1675)[2]. Isaac Barrow membuktikan versi umum bagian pertama teorema ini, sedangkan anak didik Barrow, Isaac Newton (1643-1727) menyelesaikan perkembangan dari teori matematika di sekitarnya. Gottfried Leibniz (1646–1716) mensistematisasi ilmu ini menjadi kalkulus untuk kuantitas infinitesimal.
Teorema dasar kalkulus kadang-kadang juga disebut sebagai Teorema dasar kalkulus Leibniz atau Teorema dasar kalkulus Torricelli-Barrow.
mumet
ReplyDelete